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Abstract

Following some ideas of the quantum secret sharing (QSS) protocol (2008,
Phys. Lett. A 372, 1957), we propose an efficient quantum private comparison
(QPC) protocol for comparing information of equality with the help of a third
party (TP). The protocol can ensure fairness, efficiency and security. The
protocol is fair, which means that one party knows the sound result of the
comparison if and only if the other one knows the result. The protocol is
efficient with the help of the TP for calculating. However, the TP cannot learn
any information about the players’ respective private inputs and even about the
comparison result and cannot collude with any player. The protocol is secure for
the two players, that is, any information about their respective secret inputs will
not leak except the final computation result. A precise proof of security of the
protocol is presented. Applications of this protocol may include private bidding
and auctions, secret ballot elections, commercial business, identification in a
number of scenarios and so on.

PACS numbers: 03.67.Dd, 03.65.Ta, 89.70.+c

1. Introduction

Quantum information, an ingenious application of quantum mechanics within the field of
information has attracted a lot of attentions [1–5]. In particular, almost all the branches
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of quantum communication have been developed quickly since the original protocol was
proposed by Bennett and Brassard [6] in 1984, such as quantum key distribution (QKD)
[6–14], quantum secure direction communication (QSDC) [15–17], quantum teleportation
[3, 4], quantum secret sharing (QSS) [18–20] and so on. QKD provides a secure way for
creating a private key between two remote parties. To date, QKD has progressed quickly and
becomes one of the most mature applications of quantum information.

Secret sharing and multiparty computation (also called ‘secure function evaluation’) are
fundamental primitives in modern cryptography, allowing a group of mutually distrustful
players to perform correct, distributed computations without leaking their respective secret
inputs under the sole assumption that some of them will follow the protocol honestly. Secure
multiparty computation can be applied extensively to many applications including private
bidding and auctions, secret ballot elections, commercial business, identification in a number
of scenarios and so on. At present, research on secure multi-party computation is of great
interest in modern cryptography (see [21] for a survey). It should be acknowledged that if
any function can be computed securely, then it results in a very powerful tool. In fact, all
natural protocols are, or can be rephrased to be, special cases of the multi-party computation
problems. Design and analysis of the special multi-party computation protocols is meaningful
and has attracted much interest in this field.

In the traditional secure two-party computation scenario [22, 23], Alice has a secret input
x, Bob has a secret input y, and both of them wish to compute f (x, y) which is well known to
the two parties; the usual example is that of two millionaires who wish to compare their wealth
without disclosing how much they own [23]. Colbeck showed that unconditionally secure
two-party classical computation is impossible for many classes of function by attacks [24].
However the story is changed when it was extended to the quantum setting by [25]. A secure
quantum multiparty protocol allows n players P1, . . . , Pn to compute an n input quantum
circuit where each player Pi is responsible for providing one of the input states. The output of
the circuit is broken into n components H1 ⊗ H2 ⊗ . . . ⊗ Hn. Pi receives the output Hi . Note
that the inputs are arbitrary (possibly entangled) quantum states and each player simply has his
input in his possession—he does not need to know its classical description. However we wish
to achieve the same functionality if each player replaces his secret input quantum state with
a special unitary operation and a TP measures the output quantum states. Many particular
secure multiparty computation problems exist, such as secure multiparty summation, the
private comparison of the size of two or more numbers and comparing information of equality.
In fact, comparing information of equality is a very important problem in secure multiparty
quantum computation, which is critical in quantum auction [26] and quantum voting [27, 28]
and other special cases.

In this paper, following some ideas of the QSS protocol [29], we propose an efficient
protocol for comparing information of equality using decoy photons and two-photon entangled
states. Suppose there are a third party TP, and two players Bob and Charlie. The secret inputs
of Bob and Charlie are x and y, respectively. The protocol can ensure

(i) Fairness: the protocol is fair, which means that one player knows the sound result of
x = y if and only if the other one knows the result and that one player knows the sound
result of x �= y if and only if the other one knows the result.

(ii) Security: although the protocol is implemented with the help of a TP for calculating,
the TP cannot learn any information about the players’ private inputs and even about the
comparison result. One player cannot deduce the other’s secret input from the comparison
result of x �= y and even the size relation of x and y. The protocol is secure for the two
players, that is, any information about their secret inputs will not leak including the final
comparison result.
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(iii) Efficiency: the protocol is implemented with the help of the TP for calculating, which
improves the efficiency of the protocol. Here, the term ‘efficiency’ means the involvement
of the TP will improve the efficiency of the protocol in contrast to the case without the TP.
That is, if the protocol involves only the two players, it maybe consumes more quantum
and classical resources.

2. Comparing information of equality between two parties

Similar to [29, 19], let us first define the four Bell states as

|φ±〉 = 1√
2
(|+z〉B |+z〉C ± |−z〉B |−z〉C),

= 1√
2
(|+x〉B |±x〉C + |−x〉B |∓x〉C),

|ψ±〉 = 1√
2
(|+z〉B|−z〉C ± |−z〉B|+z〉C),

= 1√
2
(|±x〉B |+x〉C − |∓x〉B |−x〉C), (1)

where |+z〉 ≡ |0〉 and |−z〉 ≡ |1〉 are the spin eigenstates along the z-direction. |+x〉 ≡
1√
2
(|0〉 + |1〉) and |−x〉 ≡ 1√

2
(|0〉 − |1〉) are the spin eigenstates along the x-direction.

The subscripts B and C denote the two particles in a Bell state. The four unitary
operations Ui(i = 00, 01, 10, 11) can transform one of the Bell states into another, i.e.,
I ⊗ U00|ψ±〉 = |ψ±〉, I ⊗ U00|φ±〉 = |φ±〉, I ⊗ U01|ψ±〉 = −|ψ∓〉, I ⊗ U01|φ±〉 = |φ∓〉,
I ⊗ U10|ψ±〉 = |φ±〉, I ⊗ U10|φ±〉 = |ψ±〉, I ⊗ U11|ψ±〉 = |φ∓〉, I ⊗ U11|φ±〉 = −|ψ∓〉.

Here
U00 = I = |0〉〈0| + |1〉〈1|,
U01 = σz = |0〉〈0| − |1〉〈1|,
U10 = σx = |1〉〈0| + |0〉〈1|,
U11 = iσy = |0〉〈1| − |1〉〈0|.

(2)

For simplicity, we consider the case with two distrustful players who want to compare
whether their secrets are equal with a help of the TP. Suppose that the two players, say, Bob
and Charlie have secrets x and y, respectively.

Let

X = (xN−1, xN−2, . . . , x0) (3)

and

Y = (yN−1, yN−2, . . . , y0) (4)

be the binary representations of x and y in F2N , respectively, where x = ∑N−1
i=0 xi2i ,

y = ∑N−1
i=0 yi2i , with xi, yi ∈ {0, 1}, 2N−1 � max{x, y} < 2N . For other i � N and

i < 0, xi = yi = 0.

Bob and Charlie share a secret hash function H beforehand. Here the hash function is
defined as

H : {0, 1}N → {0, 1}M, (5)

where N and M denote the length of the secret inputs and the length of the hash values of the
secret inputs, respectively. The hash values of X and Y are

H(X) = (x ′
M−1, x

′
M−2, . . . , x

′
0) (6)

and

H(Y) = (y ′
M−1, y

′
M−2, . . . , y

′
0), (7)

respectively.
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If M is even, H(X) and H(Y) are divided into groups {(x ′
M−1, x

′
M−2), (x

′
M−3, x

′
M−4), . . . ,

(x ′
1, x

′
0)} and {(y ′

M−1, y
′
M−2), (y

′
M−3, y

′
M−4), . . . , (y

′
1, y

′
0)}, respectively. Otherwise, H(X)

and H(Y) are divided into groups {(x ′
M−1, x

′
M−2), (x

′
M−3, x

′
M−4), . . . , (x

′
0, x

′
−1)} and

{(y ′
M−1, y

′
M−2), (y

′
M−3, y

′
M−4), . . . , (y

′
0, y

′
−1)}, respectively.

2.1. Our scheme

Now, let us describe the principle of our QPC scheme in detail as follows.

Step 1. The TP, Bob and Charlie agree that the four unitary operations Ui(i = 00, 01, 10, 11)

represent two-bit information 00,01,10 and 11, respectively.

Step 2. The TP prepares a sequence of n(n > M/2) ordered EPR pairs T each randomly in
one of the four Bell states only known to him. We denote the n ordered EPR pairs in the
sequence T with

{(
t1
B, t1

C

)
,
(
t2
B, t2

C

)
, . . . ,

(
tnB, tnC

)}
, where the superscripts 1, 2, . . . , n indicate

the order of each EPR pair in the sequence T, and the subscripts B and C represent the different
photons in each EPR pair. Subsequently, the TP takes the photon B from each EPR pair in
the sequence T to form an ordered photon sequence

{
t1
B, t2

B, . . . , tnB
}
, called the sequence TB .

The remaining partner photons compose of another ordered photon sequence
{
t1
C, t2

C, . . . , tnC
}
,

called the sequence TC . He sends the sequence TB to Bob via the TP–Bob quantum channel
and TC to Charlie via the TP–Charlie quantum channel. For preventing the dishonest player
from eavesdropping, similar to [29], the TP adopts the decoy photon technique by inserting
decoy photons each randomly in one of the four nonorthogonal states {|0〉, |1〉, |+x〉, |−x〉}
into the sequences TB and TC at random positions with the probability pd , respectively.

Step 3. After Bob and Charlie publicly confirm that they have received all particles, to
guarantee the security of the transmission from the TP to the two players, the TP, Bob and
Charlie should check whether the particles are eavesdropped during the transmission. The
checking procedure is (i) the TP informs Bob and Charlie of the positions and the measuring
bases (MBs) of the decoy photons sent to them, respectively. (ii) Bob and Charlie perform the
same MBs as the TP published and publish their measurement outcomes, respectively. The
TP analyses the error rate. If the error rate is higher than the threshold ε1, then he aborts
the protocol. Otherwise, they proceed to step 4.

Step 4. Before Bob and Charlie encode their secrets, they still have to check whether the TP
is honest. That is, they need to check whether the remaining photons held by them are in a
genuine Bell state by using the correlation property of EPR pairs. The checking procedure
is (i) Bob and Charlie choose some photons randomly in the sequences TB and TC with the
probability pc and require the TP to publish the states of the randomly chosen EPR pairs.
(ii) For each chosen EPR pair, Bob and Charlie measure the corresponding sampling photons
with the two MBs, Z or X randomly and announce their measurement outcomes and MBs
in the order randomly determined as either ((1) Bob’s outcome, (2) Charlie’s outcome,
(3) Charlie’s MB, (4) Bob’s MB) or ((1) Charlie’s outcome, (2) Bob’s outcome, (3) Bob’s MB,
(4) Charlie’s MB). If Bob and Charlie find the error rate is higher than the threshold ε2, then
they abort the protocol. Otherwise they proceed to step 5.

Step 5. Bob and Charlie encode their secrets’ hash values H(X) and H(Y) on the remaining
photons held by them with the four unitary operations, respectively. If M is even, Bob
(Charlie) performs a unitary operation Ux ′

2kx
′
2k+1

(Uy ′
2ky

′
2k+1

) on the (k + 1)th photon in the photon
sequence according to his secret bits x ′

2kx
′
2k+1(y ′

2ky
′
2k+1), k = 0, 1, . . . ,

∣∣M−2
2

∣∣. Otherwise, Bob
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(Charlie) performs a unitary operation Ux ′
2k−1x

′
2k
(Uy ′

2k−1y
′
2k
) on the (k + 1)th photon in the photon

sequence according to his secret bits x ′
2k−1x

′
2k(y ′

2k−1y
′
2k), k = 0, 1, . . . ,

∣∣M−2
2

∣∣. To check
whether the TP will cheat in the following announcement of his measurement outcomes, Bob
and Charlie secretly generate a random number l by using the QKD method. Bob (Charlie)
inserts the remaining intact EPR photons into the encoded photon sequence at the positions
determined by the value of l. And Bob and Charlie require the TP to publish the states of the
remaining EPR pairs beforehand. For checking eavesdropping in the Bob–TP and Charlie–TP
quantum channels, each player also inserts decoy photons each randomly in one of the four
nonorthogonal states {|0〉, |1〉, |+x〉, |−x〉} into the EPR photon sequence at random positions
with the probability pe, respectively. And then they send the sequences back to the TP.

Step 6. After the TP publicly confirms that he has received all particles, the TP, Bob and
Charlie should first check whether the dishonest player eavesdrops during the transmission by
using the checking procedure similar to step 3. If they confirm no eavesdropping, then the TP
takes a Bell-basis measurement on each two correlated photons received from Bob and Charlie
with the two-photon entanglement basis {|φ±〉, |ψ±〉}, records these measurement outcomes
and publish his initial states of EPR pairs except for eavesdropping check. These measurement
outcomes are divided into two sets: the set of the sampling EPR pairs’ measurement outcomes,
C and that of the encoding EPR pairs’ measurement outcomes, M. The TP cannot know the
information about which set each measurement outcome of EPR pair belongs to. Bob and
Charlie choose a subset of the positions from one of the two sets randomly and ask the TP to
publish the measurement outcomes at these chosen positions. For the positions chosen from
the set C, if the inconsistency rate between the measurement outcomes and the TP’s beforehand
announcements is higher than the threshold ε3, Bob and Charlie can find that the TP is cheating
and abort the protocol. Otherwise, they continue to choose a position subset randomly from
one of the two sets and ask the TP to publish the measurement outcomes. For the positions
chosen from the set M, Bob and charlie can distill the outcomes of the combination of the
unitary operations performed by them from the TP’ measurement outcomes and their initial
states with error correction and privacy amplification [7] and deduce the comparison result.

According to the TP’s measurement outcomes of the encoded EPR pairs, Bob and Charlie
can obtain whether x is equal to y, but they cannot deduce each other’s secret in terms of
the one-way property of the hash function. If all the error rates are lower than the threshold
εth = min{ε1, ε2, ε3} = min{pd/4, pc/4, pe/4}, our QPC protocol can realize the function
of comparing whether their secrets are equal, our QPC protocol can realize the function
of comparing whether their secrets are equal between two parties without disclosing any
knowledge about their respective secrets with the help of the TP. From this QPC protocol, one
can easily see that no TP in a QPC protocol is impossible. In the QPC protocol, the TP plays
a very important role in preparing the quantum sources and measuring them, which provides
a fair comparison environment.

2.2. Security analysis

As pointed out in [30–32], a participant generally has more advantages in an attack than
an outsider eavesdropper in the QSS protocols. If a QSS protocol is secure for a dishonest
participant, it is secure for any eavesdropper. So the participant attack should be paid more
attention to in the security analysis of a QSS protocol. The security analysis of a QPC
protocol is, however, different from and even more complex than that of a QSS protocol as
the attack from the compromised TP except the player has to be considered in the design of
QPC protocols. To see this in a sufficient way, we will consider three possible cases: (1) the
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honest TP and Charlie, and a dishonest one Bob. Because the role of Bob is same as that of
Charlie. Without loss of generality, we assume Bob is the dishonest one; (2) a compromised
TP and two honest players Bob and Charlie. (3) the TP colludes with a dishonest player,
say Bob.

Case 1. The honest TP and Charlie, and a dishonest one Bob.
If Bob is dishonest, the purpose of his attack is to try to obtain the other party’s secret

by cheating. In fact he cannot attain this goal. The reasons are as follows. Similar to [29],
the process of eavesdropping check with decoy photons between the TP and Charlie does
not require Bob to participate in it, which will forbid Bob to eavesdrop the quantum channel
from the TP to Charlie with an opaque attack strategy [33], especially when the transmission
efficiencies are lower than 50%. Similar to [29, 34], the TP exploits the refined error analysis
technique [34] for checking eavesdropping of the process of the transmission from the TP to
the two players Bob and Charlie. That is, the TP only picks up the decoy photons to check
eavesdropping. This eavesdropping check in step 3 will find out Bob monitoring the quantum
channel from the TP to Charlie as any eavesdropping will leave a trace in the outcomes of the
decoy sampling photons. Hence, the use of the decoy photons can prevent the dishonest player
from eavesdropping freely. Last, if Bob tries to take a disturbance attack, no cryptography is
possible at all. Also, the parties can complete a faithful qubit transmission against collective
noise with the technique in [35], which will improve the practical efficiency in this QPC
protocol.

As for the delay-photon Trojan horse attack and the invisible photon eavesdropping (IPE)
Trojan horse attack [36, 37], the player can insert a filter in front of his devices to filter out the
photon signal with an illegitimate wavelength, and the eavesdropper obtains no information
by performing IPE Trojan horse attack strategies.

As for the photon-number-splitting (PNS) attack [31, 37, 38], the player can insert a filter
in front of his devices to filter out the photon signal with an illegitimate wavelength and use
some beam splitters to split the sampling signals chosen for eavesdropping check before they
measure the signals with the MB Z or X.

Case 2. A compromised TP, and two honest parties Bob and Charlie.
To check whether the TP is honest, Bob and Charlie need to check whether the remaining

photons held by them are in a genuine Bell state. It is known that when a qubit of an entangled
pair travels in a noisy quantum channel, the initial entanglement might be lost. Hence, a
security problem for this protocol in a noisy channel seems to arise. Incidentally, the quantum
purification and distillation or quantum repeater techniques should be adopted if the quantum
channel noise or decoherence is taken into account [3, 39–43]. Once the two players have
shared an entangled qubit pair, then the TP’s attack can be detected by adopting the strategy
suggested in [15, 44], that is, using the two-set-measuring-bases method to check the qubit
distribution security. In this case, if there exists a compromised TP, any eavesdropping attack
will inevitably introduce some detectable errors [15, 44]. This indicates that any attack of
the TP’s can be found. The TP cannot learn any information about the players’ respective
private inputs and even about the comparison result in that the TP cannot discriminate between
the encoded EPR pairs and the sampling ones because Bob and Charlie insert the sampling
ones into the encoded EPR particle sequences at the positions determined by the random
number l only known to Bob and Charlie. And with a negligible probability that the TP can
discriminate between the encoded EPR pairs and the sampling ones, he can obtain only the
correlation information about the hash values of the secrets of Bob and Charlie and cannot
deduce the players’ respective private inputs.
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Case 3. The TP colludes with a dishonest player, say Bob.
If the TP tries to collude with Bob to obtain Charlie’s secret, they cannot achieve this goal.

In terms of the one-way property of the hash function, x → f (x) is easy, but the reverse, i.e.,
f (x) → x is difficult computationally. Hence, even if the TP colludes with Bob, they obtain
only the information about the hash value of Charlie’s secret not Charlie’s secret itself because
of the one-way property of the hash function.

To summarize, by the detailed security analysis of the QPC protocol, we can see that our QPC
protocol is secure against eavesdropping.

3. Discussion and summary

In this paper, following some ideas of the QSS protocol [29], we propose a QPC protocol
based on two-photon entanglement. The protocol in [29] is in fact the improved version
of the protocol in [19] with quantum dense coding and decoy photons, which increases its
intrinsic efficiency, the source capacity and the security largely. Our present QPC scheme
retains these advantages of high intrinsic efficiency and security. Almost all the instances
((1 − pd)(1 − pe)M/2n) (for M is even) or ((1 − pd)(1 − pe)(M + 1)/2n) (for M is odd) are
useful for encoding the secret bits except for those chosen for eavesdropping check and each
of the two-photon entangled quantum system can carry two bits of information. Moreover,
the classical information exchanged is reduced largely as the two players need not publish
their MBs when they encode their secret’s hash value with the four unitary operations. And
the efficiency for qubits ηq is defined as ηq ≡ qu

qt
. Then the efficiency for qubits ηq =

((1 − pd)(1 − pc)(1 − pe)M/2n) (for M is even) or ((1 − pd)(1 − pc)(1 − pe)(M + 1)/2n)

(for M is odd) approaches 1 when pd , pc and pe are very small and n → M/2. The total
efficiency ηt is defined as ηt = bs

qt +bt
, where bs , qt and bt are the number of secret bits, the

qubits transmitted and the total classical bits exchanged between the parties in the quantum
communication, respectively. Then the total efficiency

ηt = (1 − pd)(1 − pc)(1 − pe)M/2n

2 + 2pd + 2pc + 2pe

(for M is even)

or
(1 − pd)(1 − pc)(1 − pe)(M + 1)/2n

2 + 2pd + 2pc + 2pe

(for M is odd)

approaches 50% when pd , pc and pe are very small and nM/2. From the formulae of the
efficiency for qubits ηq and the total efficiency ηt , one can easily see that the efficiency of
the present protocol directly depends on the values of pd , pc and pe. Hence it is necessary
to analyze how they scale. However, the values of pd , pc and pe are subject to several
factors including the type of the eavesdropper’s attack and the quantum channel noise. For
example, if the eavesdropper performs an intercept-resend attack in an ideal quantum channel,
the probability of his attack being detected in the three security checks is 1/2, 1/8 and 1/2,
respectively. In a practical quantum noisy channel, the quantum channel noise may affect the
particles through the quantum channel and consequently induce the quantum bit error. Hence
the players cannot tell affirmatively how many outcomes are changed by the quantum channel
noise. Therefore, the quantum bit error rate (QBER) induced by the present intercept-resend
eavesdropping practically ranges from 1/2 × 1/2 = 1/4 to 1/2, 1/2×1/l8 ≈ 6.25% to 12.5%
and 1/2 × 1/2 = 1/4 to 1/2, respectively. For other types of attacks and the different types
of the noisy quantum channel, the QBER may be different. However, the value of the QBER
directly determines the probability of the players’ choosing the sampling photons from the
photon sequence, i.e., the values of pd , pc and pe. The detailed analysis of how the different
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attacks and the type of the noisy channel have effect on the QBER is outside the scope of
our paper. In addition, our QPC protocol has a disadvantage, that is, it cannot prevent the
dishonest player from providing a false secret.

Our two-party QPC protocol can be simply generalized to the case with more parties. If
the generalization is done, it solves the problem only on whether the secret values among more
parties are equal, but not on the sort order of the secret values, i.e., our protocol cannot solve
the problem on which the secret value is the largest, which secret value is the second largest,
which secret value is the smallest and so on. This needs us to study further.

Acknowledgments

This work is supported by the National Basic Research Program of China (973 Program)
(Grant No. 2007CB311100); the National Natural Science Foundation of China (Grant No.
60873191); the National High Technology Research and Development Program of China
(Grant No. 2006AA01Z419); the Major Research plan of the National Natural Science
Foundation of China (Grant No. 90604023); the Scientific Research Common Program of
Beijing Municipal Commission of Education (Grant No. KM200810005004); the Natural
Science Foundation of Beijing (Grant No. 1093015); the ISN open foundation.

References

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge
University Press)

[2] Long G L and Xiao L 2004 Phys. Rev. A 69 052303
[3] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[4] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[5] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[6] Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing

(Bangalore, India, IEEE press, New York) pp 175–9
[7] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[8] Ekert A K 1991 Phys. Rev. Lett. 67 661
[9] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557

[10] Mayers D 2001 J. Assoc. Comp. Mach. 48 351
[11] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
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